Bepaal modulus en argument
- \(10+4i\)
- \(-4\)
- \(-7i\)
- \(-7-2i\)
- \(-6-i\)
- \(9\)
- \(-3-4i\)
- \(3\)
- \(-1+2i\)
- \(-4+4i\)
- \(-3-3i\)
- \(-1-5i\)
Bepaal modulus en argument
Verbetersleutel
- \(10+4i\\ r = \sqrt{10^2+4^2} = \sqrt{116} \\ \alpha = tan^{-1}(\frac{4}{10}) \Leftrightarrow \alpha =21^\circ 48' 5{,}1"\text{ of } \alpha = 201^\circ 48' 5{,}1"\\10+4i\text{ ligt in kwadrant }1, \alpha \text{ ligt dus tussen }0^\circ \text{ en }90^\circ\\ \alpha = 21^\circ 48' 5{,}1"\)
- \(-4\\ \text{ Dit complex getal ligt op het negatief gedeelte van de x-as. We hebben geen berekeningen nodig om r of } \alpha \text{ te berekenen.} \\\text{r = }4\\\alpha = 180 ^\circ \\\)
- \(-7i\\ \text{ Dit complex getal ligt op het negatief gedeelte van de y-as. We hebben geen berekeningen nodig om r of } \alpha \text{ te berekenen.} \\\text{r = }7\\\alpha = 270 ^\circ \\\)
- \(-7-2i\\ r = \sqrt{(-7)^2+(-2)^2} = \sqrt{53} \\ \alpha = tan^{-1}(\frac{-2}{-7}) \Leftrightarrow \alpha =15^\circ 56' 43{,}4"\text{ of } \alpha = 195^\circ 56' 43{,}4"\\-7-2i\text{ ligt in kwadrant }3, \alpha \text{ ligt dus tussen }180^\circ \text{ en }270^\circ\\ \alpha = 195^\circ 56' 43{,}4"\)
- \(-6-i\\ r = \sqrt{(-6)^2+(-1)^2} = \sqrt{37} \\ \alpha = tan^{-1}(\frac{-1}{-6}) \Leftrightarrow \alpha =9^\circ 27' 44{,}4"\text{ of } \alpha = 189^\circ 27' 44{,}4"\\-6-i\text{ ligt in kwadrant }3, \alpha \text{ ligt dus tussen }180^\circ \text{ en }270^\circ\\ \alpha = 189^\circ 27' 44{,}4"\)
- \(9\\ \text{ Dit complex getal ligt op het positief gedeelte van de x-as. We hebben geen berekeningen nodig om r of } \alpha \text{ te berekenen.} \\\text{r = }9\\\alpha = 0 ^\circ \\\)
- \(-3-4i\\ r = \sqrt{(-3)^2+(-4)^2} = \sqrt{25} \\ \alpha = tan^{-1}(\frac{-4}{-3}) \Leftrightarrow \alpha =53^\circ 7' 48{,}4"\text{ of } \alpha = 233^\circ 7' 48{,}4"\\-3-4i\text{ ligt in kwadrant }3, \alpha \text{ ligt dus tussen }180^\circ \text{ en }270^\circ\\ \alpha = 233^\circ 7' 48{,}4"\)
- \(3\\ \text{ Dit complex getal ligt op het positief gedeelte van de x-as. We hebben geen berekeningen nodig om r of } \alpha \text{ te berekenen.} \\\text{r = }3\\\alpha = 0 ^\circ \\\)
- \(-1+2i\\ r = \sqrt{(-1)^2+2^2} = \sqrt{5} \\ \alpha = tan^{-1}(\frac{2}{-1}) \Leftrightarrow \alpha =116^\circ 33' 54{,}2"\text{ of } \alpha = 296^\circ 33' 54{,}2"\\-1+2i\text{ ligt in kwadrant }2, \alpha \text{ ligt dus tussen }90^\circ \text{ en }180^\circ\\ \alpha = 116^\circ 33' 54{,}2"\)
- \(-4+4i\\ r = \sqrt{(-4)^2+4^2} = \sqrt{32} \\ \alpha = tan^{-1}(\frac{4}{-4}) \Leftrightarrow \alpha =135^\circ \text{ of } \alpha = 315^\circ \\-4+4i\text{ ligt in kwadrant }2, \alpha \text{ ligt dus tussen }90^\circ \text{ en }180^\circ\\ \alpha = 135^\circ \)
- \(-3-3i\\ r = \sqrt{(-3)^2+(-3)^2} = \sqrt{18} \\ \alpha = tan^{-1}(\frac{-3}{-3}) \Leftrightarrow \alpha =45^\circ \text{ of } \alpha = 225^\circ \\-3-3i\text{ ligt in kwadrant }3, \alpha \text{ ligt dus tussen }180^\circ \text{ en }270^\circ\\ \alpha = 225^\circ \)
- \(-1-5i\\ r = \sqrt{(-1)^2+(-5)^2} = \sqrt{26} \\ \alpha = tan^{-1}(\frac{-5}{-1}) \Leftrightarrow \alpha =78^\circ 41' 24{,}2"\text{ of } \alpha = 258^\circ 41' 24{,}2"\\-1-5i\text{ ligt in kwadrant }3, \alpha \text{ ligt dus tussen }180^\circ \text{ en }270^\circ\\ \alpha = 258^\circ 41' 24{,}2"\)